Propriedades Físicas do Aço: Medidas Chave para o Design de Engenharia
Compartilhar
Table Of Content
Table Of Content
Definição e Conceito Básico
As propriedades físicas do aço referem-se às características inerentes que descrevem seu comportamento sob várias condições sem alterar sua composição química. Essas propriedades incluem densidade, condutividade térmica, condutividade elétrica, propriedades magnéticas, expansão térmica, ponto de fusão e capacidade calorífica específica. As propriedades físicas são fundamentais para entender o comportamento do aço em várias aplicações e ambientes.
As propriedades físicas diferem das propriedades mecânicas na medida em que descrevem características materiais inerentes, em vez de respostas a forças aplicadas. Elas formam a base para a seleção de materiais em aplicações de engenharia onde as condições ambientais, o gerenciamento térmico ou os requisitos elétricos são considerações críticas.
Na metalurgia, as propriedades físicas fazem a ponte entre a estrutura atômica e o comportamento macroscópico. Elas representam a manifestação da ligação atômica, da estrutura cristalina e das características microestruturais que definem o comportamento do aço em vários ambientes e condições sem carga mecânica externa.
Natureza Física e Fundamento Teórico
Mecanismo Físico
As propriedades físicas do aço se originam no nível atômico, determinadas principalmente pela estrutura eletrônica e características de ligação do ferro e seus elementos de liga. As estruturas cristalinas cúbicas de corpo centrado (BCC) ou cúbicas de face centrada (FCC) do aço, juntamente com imperfeições na rede, governam propriedades como condutividade térmica e resistividade elétrica.
A mobilidade dos elétrons dentro da rede cristalina determina a condutividade elétrica, enquanto as vibrações de fônons e o movimento dos elétrons controlam a condutividade térmica. As propriedades magnéticas surgem dos spins de elétrons desemparelhados no orbital d dos átomos de ferro, criando domínios magnéticos cuja alinhamento determina a resposta magnética geral.
A expansão térmica resulta de vibrações atômicas assimétricas à medida que a temperatura aumenta, fazendo com que os átomos ocupem posições médias maiores. Esses fenômenos em nível atômico se manifestam coletivamente como propriedades físicas mensuráveis na escala macroscópica.
Modelos Teóricos
O modelo de Drude-Lorentz fornece uma estrutura clássica para entender a condutividade elétrica e térmica em metais, tratando os elétrons como um gás de partículas livres movendo-se através de uma rede de íons positivos. Este modelo foi posteriormente refinado por abordagens mecânicas quânticas, como o modelo de Sommerfeld, que incorpora estatísticas de Fermi-Dirac.
A compreensão histórica das propriedades físicas evoluiu de observações empíricas no século 19 para explicações mecânicas quânticas no século 20. O desenvolvimento da teoria de bandas explicou ainda mais as diferenças de condutividade entre metais, semicondutores e isolantes.
Para as propriedades magnéticas, a teoria do campo molecular de Weiss e modelos mecânicos quânticos mais sofisticados explicam o ferromagnetismo no aço. As propriedades térmicas são descritas usando o modelo de Debye para calor específico e vários modelos para expansão térmica com base em vibrações de rede anarmônicas.
Base da Ciência dos Materiais
A estrutura cristalina influencia fundamentalmente as propriedades físicas, com o ferrite BCC e austenite FCC exibindo diferentes condutividades, respostas magnéticas e características de expansão térmica. As fronteiras de grão atuam como centros de dispersão para elétrons e fônons, reduzindo tanto a condutividade elétrica quanto a térmica.
Características microestruturais como distribuição de fases, precipitados e discordâncias criam variações locais nas propriedades físicas. Por exemplo, estruturas perlíticas com camadas alternadas de ferrite e cementita exibem condutividade anisotrópica devido às diferentes propriedades de cada fase.
Essas propriedades se conectam a princípios fundamentais da ciência dos materiais, como as regras de Hume-Rothery que governam soluções sólidas, e a relação entre estrutura eletrônica e comportamento físico, conforme descrito pela mecânica quântica e física do estado sólido.
Expressão Matemática e Métodos de Cálculo
Fórmula de Definição Básica
Para a condutividade térmica, a equação definidora fundamental é:
$$q = -k \nabla T$$
Onde $q$ é o fluxo de calor (W/m²), $k$ é a condutividade térmica (W/m·K), e $\nabla T$ é o gradiente de temperatura (K/m). O sinal negativo indica que o calor flui de regiões de temperatura mais alta para regiões de temperatura mais baixa.
Para a condutividade elétrica, a relação é expressa pela lei de Ohm:
$$J = \sigma E$$
Onde $J$ é a densidade de corrente (A/m²), $\sigma$ é a condutividade elétrica (S/m), e $E$ é o campo elétrico (V/m).
Fórmulas de Cálculo Relacionadas
A dependência da temperatura da resistividade elétrica em metais pode ser aproximada por:
$$\rho(T) = \rho_0$$1 + \alpha(T - T_0)$$$$
Onde $\rho(T)$ é a resistividade à temperatura $T$, $\rho_0$ é a resistividade à temperatura de referência $T_0$, e $\alpha$ é o coeficiente de temperatura da resistividade.
A lei de Wiedemann-Franz relaciona a condutividade térmica ($k$) à condutividade elétrica ($\sigma$):
$$\frac{k}{\sigma T} = L$$
Onde $L$ é o número de Lorenz (aproximadamente 2.44 × 10⁻⁸ W·Ω/K² para a maioria dos metais), e $T$ é a temperatura absoluta.
Condições e Limitações Aplicáveis
Essas fórmulas assumem materiais homogêneos e isotrópicos sob condições de estado estacionário. Para o aço com microestruturas complexas, variações locais podem exigir modelos mais sofisticados ou correções empíricas.
A lei de Wiedemann-Franz se aplica melhor a metais puros em temperaturas moderadas a altas, onde a dispersão de elétrons é mínima. Desvios ocorrem em temperaturas muito baixas ou em ligas com dispersão de impurezas significativa.
As relações de expansão térmica linear são válidas apenas para pequenas variações de temperatura, tipicamente abaixo de 50% da temperatura de fusão. Além desse intervalo, os termos não lineares tornam-se significativos.
Métodos de Medição e Caracterização
Especificações de Teste Padrão
ASTM E1461: Método de Teste Padrão para Difusividade Térmica pelo Método Flash, cobrindo a medição da difusividade térmica a partir da qual a condutividade térmica pode ser calculada.
ASTM B193: Método de Teste Padrão para Resistividade de Materiais Condutores Elétricos, detalhando procedimentos para medir a resistividade elétrica de materiais metálicos.
ISO 17359: Monitoramento de condição e diagnósticos de máquinas - Diretrizes gerais, incluindo métodos para medir propriedades físicas como parte do monitoramento de condição.
ASTM E228: Método de Teste Padrão para Expansão Térmica Linear de Materiais Sólidos com um Dilatômetro de Push-Rod, especificando procedimentos para medir coeficientes de expansão térmica.
Equipamentos e Princípios de Teste
O aparelho de flash a laser mede a difusividade térmica aquecendo um lado de um espécime fino com um pulso de laser e medindo o aumento de temperatura no lado oposto. A condutividade térmica é calculada usando a difusividade medida, calor específico e densidade.
Sistemas de sonda de quatro pontos medem a resistividade elétrica passando corrente através de contatos externos enquanto medem a queda de tensão nos contatos internos, eliminando os efeitos da resistência de contato.
Dilatômetros medem a expansão térmica rastreando mudanças dimensionais de espécimes durante ciclos controlados de aquecimento e resfriamento. Dilatômetros de push-rod, ópticos e de capacitância oferecem diferentes níveis de precisão.
Magnetômetros de amostra vibrante (VSM) e dispositivos de interferência quântica supercondutores (SQUID) caracterizam propriedades magnéticas medindo o momento magnético como uma função do campo aplicado, temperatura ou orientação.
Requisitos de Amostra
Para testes de condutividade térmica, os espécimes geralmente requerem superfícies paralelas e planas com dimensões de 10-25 mm de diâmetro e