Batas Kelelahan: Ambang Kritis untuk Daya Tahan Komponen Baja

Table Of Content

Table Of Content

Definisi dan Konsep Dasar

Batas kelelahan, juga dikenal sebagai batas ketahanan, adalah tingkat stres di bawah mana suatu material dapat menahan jumlah siklus beban yang tak terhingga tanpa kegagalan. Ini mewakili amplitudo stres ambang yang dapat ditahan oleh material tanpa mengembangkan kerusakan kelelahan.

Properti ini sangat mendasar dalam desain rekayasa untuk komponen yang terkena beban siklik, karena menetapkan rentang stres operasi yang aman untuk masa pakai layanan yang secara teoritis tak terhingga. Batas kelelahan berfungsi sebagai parameter desain kritis untuk memastikan integritas struktural jangka panjang dalam aplikasi di mana komponen mengalami pemuatan dan pembongkaran berulang.

Dalam metalurgi, batas kelelahan menempati posisi unik sebagai salah satu dari sedikit properti yang menangani perilaku material yang bergantung pada waktu dalam kondisi dinamis. Berbeda dengan properti statis seperti kekuatan luluh atau kekuatan tarik, batas kelelahan menggambarkan respons material terhadap stres siklik selama periode yang panjang, menjadikannya penting untuk memprediksi umur komponen dalam lingkungan pemuatan siklik.

Sifat Fisik dan Dasar Teoretis

Mekanisme Fisik

Di tingkat mikrostruktur, kelelahan melibatkan nukleasi dan pertumbuhan retakan yang progresif akibat deformasi plastis siklik. Ketika stres diterapkan secara siklik, bahkan pada tingkat di bawah kekuatan luluh, deformasi plastis lokal terjadi pada cacat mikrostruktur, batas butir, atau ketidakteraturan permukaan.

Deformasi lokal ini menyebabkan pembentukan pita slip yang persisten (PSB), di mana dislokasi terakumulasi dan menciptakan intrusi dan ekstrusi pada permukaan material. Ketidakteraturan permukaan ini bertindak sebagai konsentrator stres yang akhirnya berkembang menjadi mikroretakan. Di bawah batas kelelahan, energi yang masuk tidak cukup untuk mendorong proses inisiasi retakan ini.

Keberadaan batas kelelahan pada baja terutama disebabkan oleh interaksi antara dislokasi dan atom interstitial (terutama karbon dan nitrogen). Atom interstitial ini menciptakan medan regangan yang secara efektif menjepit dislokasi, mencegah akumulasi deformasi plastis yang tidak dapat diubah pada amplitudo stres yang rendah.

Model Teoretis

Konsep batas kelelahan pertama kali ditetapkan melalui karya Wöhler pada tahun 1850-an, yang mengembangkan pendekatan stres-hidup (S-N). Model ini memplot amplitudo stres terhadap jumlah siklus hingga kegagalan, mengungkapkan bahwa di bawah tingkat stres tertentu, material ferrous menunjukkan umur tak terhingga.

Pemahaman modern menggabungkan pendekatan strain-hidup yang dikembangkan oleh Coffin dan Manson, yang mengaitkan amplitudo regangan plastis dengan umur kelelahan. Pendekatan ini lebih baik menjelaskan perilaku kelelahan siklus rendah di mana deformasi plastis yang signifikan terjadi.

Model mekanika retak, terutama yang berdasarkan Hukum Paris, memberikan perspektif alternatif dengan fokus pada laju pertumbuhan retak daripada inisiasi retak. Model-model ini menunjukkan bahwa batas kelelahan yang sebenarnya hanya ada ketika rentang faktor intensitas stres jatuh di bawah ambang untuk propagasi retak.

Dasar Ilmu Material

Batas kelelahan berkorelasi kuat dengan struktur kristal, dengan struktur kubik berpusat badan (BCC) pada material ferrous biasanya menunjukkan batas kelelahan yang jelas. Material kubik berpusat wajah (FCC) seperti aluminium umumnya tidak memiliki batas kelelahan yang sebenarnya karena karakteristik mobilitas dislokasi yang berbeda.

Batas butir memainkan peran ganda dalam perilaku kelelahan. Mereka dapat menghambat pergerakan dislokasi dan propagasi retak, meningkatkan ketahanan kelelahan, tetapi juga dapat berfungsi sebagai situs konsentrasi stres di mana kerusakan kelelahan dimulai. Baja butir halus biasanya menunjukkan batas kelelahan yang lebih baik karena area batas butir yang meningkat yang menghambat propagasi retak.

Batas kelelahan juga tergantung pada fitur mikrostruktur seperti distribusi fase, kandungan inklusi, dan morfologi presipitat. Struktur martensitik umumnya memberikan batas kelelahan yang lebih tinggi dibandingkan dengan struktur ferritik atau perlitik karena kekerasan yang lebih tinggi dan distribusi dislokasi yang lebih merata.

Ekspresi Matematis dan Metode Perhitungan

Formula Definisi Dasar

Batas kelelahan ($\sigma_e$) biasanya didefinisikan sehubungan dengan kekuatan tarik maksimum ($\sigma_{UTS}$) untuk baja:

$$\sigma_e \approx 0.5 \sigma_{UTS}$$

Hubungan empiris ini menunjukkan bahwa batas kelelahan kira-kira setengah dari kekuatan tarik maksimum untuk banyak baja, meskipun rasio ini bervariasi dengan komposisi material dan pemrosesan.

Formula Perhitungan Terkait

Untuk komponen dengan konsentrasi stres, batas kelelahan efektif ($\sigma_{e,eff}$) dikurangi oleh faktor noth kelelahan ($K_f$):

$$\sigma_{e,eff} = \frac{\sigma_e}{K_f}$$

Di mana $K_f$ terkait dengan faktor konsentrasi stres teoritis ($K_t$) dengan:

$$K_f = 1 + q(K_t - 1)$$

Dengan $q$ menjadi faktor sensitivitas noth (antara 0 dan 1).

Hubungan Goodman menyediakan metode untuk memperhitungkan efek stres rata-rata ($\sigma_m$) pada stres bolak-balik yang diizinkan ($\sigma_a$):

$$\frac{\sigma_a}{\sigma_e} + \frac{\sigma_m}{\sigma_{UTS}} = 1$$

Kondisi dan Batasan yang Berlaku

Formula ini mengasumsikan material homogen tanpa cacat signifikan dan umumnya berlaku untuk kelelahan siklus tinggi (>10^5 siklus). Mereka menjadi kurang akurat untuk kondisi pemuatan kompleks yang melibatkan stres multiaxial atau pemuatan amplitudo variabel.

Hubungan empiris antara batas kelelahan dan kekuatan tarik pecah untuk baja berkekuatan sangat tinggi (>1400 MPa), di mana rasio biasanya menurun menjadi 0.3-0.4 karena meningkatnya sensitivitas noth.

Model-model ini mengasumsikan kondisi lingkungan yang konstan dan tidak memperhitungkan korosi, suhu tinggi, atau faktor lingkungan lain yang dapat secara signifikan mengurangi atau menghilangkan batas kelelahan.

Metode Pengukuran dan Karakterisasi

Spesifikasi Pengujian Standar

ASTM E466: Praktik Standar untuk Melakukan Uji Kelelahan Axial Amplitudo Konstan yang Dikendalikan Gaya pada Material Logam - Menyediakan prosedur untuk pengujian kelelahan axial di bawah kontrol gaya.

ISO 1143: Material Logam - Pengujian Kelelahan Pembengkokan Batang Berputar - Menentukan metode untuk pengujian kelelahan pembengkokan berputar, yang umum digunakan untuk menentukan batas kelelahan.

ASTM E739: Praktik Standar untuk Analisis Statistik Data Kelelahan Stres-Hidup (S-N) dan Strain-Hidup (ε-N) - Menyediakan metode statistik untuk menganalisis data uji kelelahan.

JIS Z 2273: Metode Pengujian Kelelahan Pembengkokan Berputar pada Logam - Standar Jepang untuk pengujian kelelahan pembengkokan berputar, banyak digunakan di negara-negara Asia.

Peralatan dan Prinsip Pengujian

Mesin pengujian balok berputar menerapkan momen pembengkokan konstan pada spesimen yang berputar di sekitar sumbu longitudinalnya, menciptakan stres tarik dan tekan bolak-balik di permukaan.

Sistem pengujian servo-hidrolik memungkinkan pengujian kelelahan axial dengan kontrol yang tepat terhadap beban atau perpindahan, memungkinkan berbagai rasio stres dan bentuk gelombang diterapkan.

Mesin pengujian kelelahan resonan beroperasi pada frekuensi resonan spesimen, memungkinkan pengujian frekuensi tinggi yang dapat secara signifikan mengurangi durasi pengujian sambil mempertahankan hasil yang akurat.

Persyaratan Sampel

Spesimen standar biasanya memiliki bagian pengukur yang seragam dengan penampang melintang bulat berdiameter 6-10 mm, dengan bagian pegangan berdiameter lebih besar dan radius transisi yang hal

Kembali ke blog

Tulis komentar